Без таблеток
Поиск по сайту

Изменение набора генов. Возможно ли изменение днк и редактирование генов человека. Выявляются ли изменения при беременности

Изменчивость представляет собой результат реакции генотипа в процессе индивидуального развития организма (онтогенеза) на условия внешней среды.

Изменчивость является одним из главных факторов эволюции. Она служит источником естественного и искусственного отбора.

Различают наследственную и ненаследственную изменчивость. К наследственной изменчивости относятся такие изменения признаков, которые определяются генотипом и сохраняются в ряду поколений. Наследственная изменчивость возникает в результате мутаций (мутационная изменчивость) или в результате рекомбинации генетического материала двух особей, например, родителей (комбинативная изменчивость).

Комбинативная изменчивость представляет собой результат перекомбинации генов и перекомбинации хромосом, несущих различные аллели, и выражается в появлении разнообразия организмов – потомков, получивших новые комбинации генов, уже существовавших у родительских форм.

У эукариотических организмов комбинативная изменчивость возникает за счет перекомбинации генетического материала родителей при половом размножении. Рекомбинация генов осуществляется различными способами. Этот процесс может быть связан с перераспределением целых хромосом. Такой механизм в соответствии с третьим законом Менделя обеспечивает независимое наследование несцепленных генов и признаков. Чаще всего рекомбинацию в узком смысле слова связывают с кроссинговером, то есть с перекомбинацией генов, локализованных в гомологичных хромосомах.

У бактерий найдено три механизма объединения и рекомбинации генетического материала: трансформация, конъюгация и трансдукция .

К ненаследственной изменчивости относят изменения признаков организма, не сохраняющиеся при половом размножении. Это так называемая модификационная изменчивость - свойство организмов менять свой фенотип в зависимости от условий среды при сохранении стабильности генотипа. Модификационные изменения имеют массовый приспособительный характер и исчезают при изменении условий. Они не представляют интереса для эволюции, поскольку не наследуются. Пределы, в рамках которых организм способен реагировать на условия окружающей среды, называются нормой реакции . Широкая норма реакции обеспечивает хорошую адаптационную способность организма. Норма реакции определяется генотипом особи.

Эпигенетическая изменчивость связана с изменением экспрессии генов без изменения их структуры. Набор работающих генов меняется в процессе индивидуального развития и в ответ на внешние воздействия. Эти изменения могут быть как ненаследуемыми, так и сохраняться на протяжении нескольких поколений.

Мутационная изменчивость.


Термин «мутация» был предложен в начале XX века Г. Де Фризом. В результате многолетних исследований растения энотеры он обнаружил ряд форм, которые отличались от основной массы, причем эти отличия сохранялись из года в год. Обобщив свои наблюдения, Де Фриз сформулировал мутационную теорию: «мутация – это явление скачкообразного, прерывистого изменения наследственного признака».

Основные положения мутационной теории.

  1. Мутации возникают внезапно как дискретные изменения признаков.
  2. Новые формы устойчивы.
  3. В отличие от модификаций мутации не образуют непрерывных рядов, не группируются вокруг какого-либо среднего типа. Они представляют собой качественные изменения.
  4. Мутации проявляются по-разному и могут быть как полезными, так и вредными.
  5. Вероятность обнаружения мутаций зависит от числа исследованных особей.
  6. Сходные мутации могут возникать неоднократно.

В дальнейшем все положения этой теории, кроме пункта 3, подтвердились.

В современном понимании мутации это наследуемые изменения генетического материала.

Существует несколько типов классификации мутаций

  1. По характеру изменения генома: геномные, хромосомные, генные.
  2. По проявлению в гетерозиготе: доминантные рецессивные.
  3. По уклонению от нормы (дикого типа): прямые, обратные.
  4. В зависимости от причин, вызвавших мутацию: спонтанные, индуцированные.
  5. По локализации в клетке: ядерные, митохондриальные, хлоропластные.
  6. По отношению к возможности наследования: генеративные, соматические.

К геномным мутациям относят изменения числа хромосом. Минимальный набор хромосом, когда каждая хромосома представлена одной копией, называется гаплоидным . Гаплоидными являются гаметы. Гаплоидный набор хромосом обозначается буквой n. В соматических клетках обычно присутствует диплоидный набор хромосом, содержащий двойной по сравнению с гаплоидным набор хромосом (2 n). В жизненных циклах эукариот встречаются случаи сверхнормального умножения числа хромосом. Если такие изменения пропорциональны (кратны) гаплоидному набору, то говорят о полиплоидизации . Если изменяется число экземпляров только одной или нескольких хромосом набора, то говорят об анеуплоидии .

Полиплоидия широко и неравномерно распределена в природе. Известны полиплоидные грибы и водоосли, часто встречаются полиплоиды среди цветковых растений. Макронуклеусы инфузорий в высокой степени полиплоидны (более 100 n).

Автополиплоидия – повторение в клетке одного и того же хромосомного набора. Один из путей возникновения полиплоидов - образование нередуцированных гамет. Удвоение числа хромосом может быть результатом эндоредупликации генетического материала: клетки, находившиеся в исходном растении в G2 фазе, вместо митоза повторно вступают в S фазу. Затем такие клетки с удвоенным числом хромосом делятся и дают начало полиплоидным клонам. Другой причиной появления полиплоидных клеток является эндомитоз – процесс нерасхождения хромосом в анафазе из-за нарушения функции веретена деления. Для искусственного получения полиплоидов применяют агенты, блокирующие расхождение удвоившихся хромосом, например, колхицин, вырабатываемый растением безвременником, винбластин, получаемый из другого растения – барвинка, камфора.

Аллополиплоиды – организмы, содержащие наборы хромосом двух или нескольких видов, полученные в результате гибридизации и полиплоидизации. Природными аллополиплоидами являются некоторые виды растений, например, геном мягкой пшеницы включает два генома родственных диплоидных пшениц и геном эгилопса. Примером искусственного аллополиплоида является гибрид редьки и капусты, полученный в 1927 г. Г.Д.Карпеченко.

Полиплоидия часто ведет к появлению более мощных и продуктивных организмов. Однако фертильность полиплоидов понижена из-за неправильной конъюгации хромосом в мейозе и неравномерного расхождения хромосом по гаметам, триплоиды не дают потомства

Хромосомные мутации связаны с перестройками хромосом – аберрациями . Выделяют аберрации внутрихромосомные (вовлечены участки одной хромосомы) и межхромосомные (вовлечены участки разных негомологичных хромосом).

Внутрихромосомные перестройки :

Дефишенси – концевые нехватки;

Делеции – выпадение частей хромосомы, не затрагивающее теломеру;

Дупликации – удвоение (умножение) части хромосомы;

Инверсии – изменения чередования генов в хромосоме в результате поворота участка хромосомы на 180 градусов.

Межхромосомные перестройки - транслокации – перемещения части одной хромосомы на другую, не гомологичную ей.

Особое положение занимают транспозиции, или инсерции – изменения локализации небольших участков генетического материала, включающих один или несколько генов. Транспозиции могут происходить как в пределах одной хромосомы, так и между хромосомами. Поэтому транспозиции занимают промежуточное положение между внутрихромосомными и межхромосомными перестройками.

Генные (точковые) мутации это изменения последовательности нуклеотидов в ДНК. Точковые мутации подразделяются на следующие группы:

а) транзиции – замена пурина на пурин; пиримидина на пиримидин;

б) трансверсии – замена пиридина на пурин и обратно;

в) вставка лишней пары нуклеотидов;

г) выпадение пары нуклеотидов.

Основная причина возникновения мутаций – «ошибки трех Р»: репликации, репарации и рекомбинации. Такие ошибки происходят при нарушении регуляции этих трех процессов. Показана положительная корреляция между частотой мутаций и дефектами ДНК полимераз и других ферментов репликации и репарации.

Основания ДНК могут существовать в нескольких таутомерных формах. Если аденин находится в обычной аминной форме, он спаривается с тимином. Будучи в редкой иминной форме, аденин образует пары с цитозином. Этот таутомерный переход аденина при последующей репликации может привести к транзиции АТ-ГЦ. Редкий енольный таутомер тимина способен образовывать пару с гуанином, а это также приведет к замене пары нуклеотидов. Все транзиции и трансверсии можно объяснить некоторой неоднозначностью соответствия между нуклеотидами в комплементарных цепях ДНК.

Частота спонтанных, то есть возникших без воздействия внешних факторов мутаций варьирует от 10 -4 до 10 -10 . Например, мутации устойчивости к стрептомицину у кишечной палочки наблюдаются с частотой 4 . 10 -10 , а появление белых глаз у дрозофилы – 4 . 10 -5 . У различных микроорганизмов – бактерий, бактериофагов, грибов – общая частота спонтанного мутирования в пересчете на репликацию генома приблизительно одинакова – около 1%. Одновременно может мутировать несколько (много) генов.

В 1925-1927 гг. было открыто мутагенное действие рентгеновских лучей. В 30-е годы ХХ века обнаружили мутагенный эффект ряда химических веществ. К физическим мутагенам относятся кроме рентгеновского ультрафиолетовое и гамма- излучение, быстрые нейтроны. Химические мутагены очень разнообразны по химической структуре и механизму действия. Например, азотистая кислота вызывает дезаминирование оснований нуклеиновых кислот, а алкилирующие супермутагены – присоединение к ним метильной или этильной групп. Это приводит к неправильному спариванию. Акридиновые соединения способствуют появлению вставок нуклеотидов.

В геномах многих организмов обнаружены особо подвижные мигрирующие генетические элементы. Впервые их обнаружила американская исследовательница Б.Мак Клинток в 1940 г. Изучая мутацию окраски зерновок у кукурузы, она нашла нестабильную мутацию, которая ревертировала к дикому типу с повышенной частотой. Нестабильные мутации часто сопровождались хромосомными нарушениями. Гены, вызывающие разрывы хромосом, были названы мобильными элементами , поскольку могли перемещаться с одного участка хромосомы на другой. Эти элементы характеризуются следующими свойствами:

  1. они могут перемещаться из одного сайта в другой;
  2. их встраивание в данный район влияет на активность генов, расположенных рядом;
  3. утрата МЭ в данном локусе превращает прежде мутабильный локус в стабильный;
  4. в сайтах, в которых присутствуют МЭ, могут возникать хромосомные аберрации и разрывы хромосом.

Геном кукурузы содержит несколько семейств мобильных элементов. Члены каждого семейства могут быть подразделены на два класса:

Автономные элементы, которые способны вырезаться и транспозироваться. Их внедрение ведет к появлению нестабильных аллелей.

Неавтономные элементы, которые могут быть активированы к танспозициям только определенными автономными элементами (членами того же семейства).

У кукурузы лучше всего изучены семейства Ac-Ds (активатор-диссоциатор), Spm (супрессор-мутатор) и Dt. Ac-элемент имеет длину 4563 пн, на концах у него инвертированные повторы. Он кодирует фермент транспозазу, обеспечивающий перемещение Ac и Ds. Элементы Ds возникают в результате делеций внутренних участков гена Ac.

В настоящее время мобильные элементы открыты у множества видов растений, животных и микроорганизмов. У E.coli были найдены IS-элементы (insertion sequences – вставные последовательности). Они характеризуются следующими характерными особенностями:

1) на концах IS-элементы несут инвертированные (повернутые на 180 градусов относительно друг друга) повторы от нескольких пар до нескольких десятков пар нуклеотидов.

2) большинство IS-элементов содержит ген транспозазы, контролирующий синтез фермента, ответственного за их перемещение.

3) в точке внедрения каждого IS-элемента, на его флангах всегда обнаруживается дупликация в прямой ориентации длиной 4-9 пар нуклеотидов.

Обычно хромосома E.coli содержит несколько IS-элементов.

В дальнейшем у бактерий были обнаружены более сложные МЭ – транспозоны, которые отличаются от IS-элементов тем, что в них включены некоторые гены, не имеющие отношения к самому процессу транспозиции, например, гена устойчивости к антибиотикам, тяжелым металлам и другим ингибиторам. Транспозоны обычно фланкированы длинными прямыми или инвертированными повторами, в роли которых часто выступают IS-элементы.

Сходно устроены и МЭ эукариот, например, Ty 1 дрожжей, множественные диспергированные гены дрозофилы.

По механизмам транспозиции МЭ делятся на два класса. Элементы первого класса перемещаются, используя обратную транскриптазу, то есть на РНК-матрице мобильного элемента синтезируется ДНК. Обратная транскриптаза (ревертаза) не только ведет синтез нити ДНК на РНК, но и осуществляет синтез второй комплементарной нити ДНК, а ЗНК матрица распадается и удаляется. Двунитевая ДНК синтезируется в цитоплазме, а затем перемещается в ядро и может встроиться в геном. Такие мобильные элементы называются ретротранспозонами. Ретротранпозоны составляют более 2% генома у дрозофилы и до 40% у растений. Элементы второго класса перемещаются непосредственно как ДНКовые элементы и называются транспозонами. Все они имеют короткие инвертированные повторы на концах.

Функциональное значение мобильных элементов.

1. Перемещения и внедрение МЭ в гены может вызвать мутации. Около 80% спонтанных мутаций в разных локусах дрозофилы вызвано инсерциями МЭ. Внедряясь в ген, МЭ может повредить экзон, разорвав его. В таком случае ген перестанет кодировать белок. Попадая в район протоморов или энхансеров, мобильный элемент может повредить регуляторную зону гена, изменить его экспрессию. Инсерция в район интрона может оказаться безвредной.

2. Может измениться состояние активности гена. Длинные концевые повторы ретротранспозонов и сами ретротранспозоны содержат нуклеотидные последовательности, являющиеся энхансерами транскрипции. Поэтому перемещение этих сигналов в геноме может изменить регуляцию активности генов.

3. В результате кроссинговера между одинаково ориентированными элементами возникает дупликация и делеция материала, расположенного между инсерциями. Если МЭ ориентированы в противоположных направлениях, возникает инверсия.

В последние десятилетия произошел огромный прогресс в изучении эпигенетической изменчивости , под которой понимают разнообразные наследуемые, хотя, возможно, и обратимые изменения экспрессии генов, не связанные с нарушением структуры генетического материала. Сейчас очевидно, что эпигенетические факторы играют значительную роль в онтогенетической дифференцировке, и нарушение этой системы ассоциировано со многими патологическими состояниями. Регуляция работы многих генов осуществляется путем ДНК-белковых взаимодействий. Это относится, в частности, к контролю экспрессии генов транскрипционными факторами, обратной регуляции работы гена его продуктом или продуктами других генов при достижении ими определенных концентраций. Если под влиянием каких-то внешних воздействий произойдут изменения в подобных белках-регуляторах, их последствия будут выражаться в виде нарушения экспрессии определенных генов.

Эпигенетические изменения могут наследоваться не только на клеточном уровне, но и на уровне целого организма. На экспрессию генов влияет характер гетерохроматинизации хромосом, который зависит не только от эндогенных, но и от экзогенных факторов. Это феномен впервые был изучен А. А. Прокофьевой-Бельговской, которая в материалах своей докторской диссертации убедительно показала, что «развитие признака в организме не определяется только наличием на участке хромосомы определенного гена, а контролируется еще состоянием данного участка, обнаруживаемого на микроскопическом уровне, то есть находится ли этот участок хромосомы в интерфазе в деконденсированном состоянии или он конденсирован». Активность многих белков определяется их посттрансляционными модификациями – фосфорилированием, ацетилированием, метилированием. В частности, подобные модификации, касающиеся гистоновых белков или белков, участвующих в регуляции работы генов, могут существенно влиять на их транскрипцию. Важную роль в регуляции экспрессии генов играют пространственные взаимоотношения между генами и соответствующими регуляторными комплексами. Все эти особенности работы генов определяют хорошо известное генетикам явление, получившее название «эффект положения » - то есть разный характер фенотипического проявления гена в зависимости от его локализации в специфических районах генома. Список явлений, которые могут быть объяснены с позиций эпигенетической изменчивости, может быть продолжен.

Одним из наиболее хорошо изученных эпигенетических механизмов является метилирование ДНК , проходящее, чаще всего, по 5-му углероду цитозина. Эта модификация ДНК играет значительную роль в регуляции экспрессии генов эукариот. 5’-нетранслируемые области генов содержат последовательности, обогащенные CpG-парами, так называемые CpG-островки. Во многих случаях инактивация гена достигается за счет метилирования этих последовательностей, причем такое состояние может стабильно поддерживаться в течение многих поколений клеток. Метильные группы нарушают взаимодействия между ДНК и белками, препятствуя тем самым связыванию транскрипционных факторов. Кроме того, метилированные районы ДНК могут взаимодействовать с репрессорами транскрипции.

Генные мутации - изменение строения одного гена. Это изменение в последовательности нуклеотидов: выпадение, вставка, замена и т.п. Например, замена а на т. Причины - нарушения при удвоении (репликации) ДНК

Генные мутации представляют собой молекулярные, не видимые в световом микроскопе изменения структуры ДНК. К мутациям генов относятся любые изменения молекулярной структуры ДНК, независимо от их локализации и влияния на жизнеспособность. Некоторые мутации не оказывают никакого влияния на структуру и функцию соответствующего белка. Другая (большая) часть генных мутаций приводит к синтезу дефектного белка, не способного выполнять свойственную ему функцию. Именно генные мутации обусловливают развитие большинства наследственных форм патологии.

Наиболее частыми моногенными заболеваниями являются у человека являются: муковисцидоз, гемохроматоз, адрено-генитальный синдром, фенилкетонурия, нейрофиброматоз, миопатии Дюшенна-Беккера и ряд других заболеваний. Клинически они проявляются признаками нарушений обмена веществ (метаболизма) в организме. Мутация может заключаться:

1) в замене основания в кодоне, это так называемая миссенсмутация (от англ, mis - ложный, неправильный + лат. sensus - смысл) - замена нуклеотида в кодирующей части гена, приводящая к замене аминокислоты в полипептиде;

2) в таком изменении кодонов, которое приведет к остановке считывания информации, это так называемая нонсенсмутация (от лат. non - нет + sensus - смысл) — замена нуклеотида в кодирующей части гена, приводит к образованию кодона-терминатора (стоп-кодона) и прекращению трансляции;

3) нарушении считывания информации, сдвиге рамки считывания, называемом фреймшифтом (от англ. frame - рамка + shift: - сдвиг, перемещение), когда молекулярные изменения ДНК приводят к изменению триплетов в процессе трансляции полипептидной цепи.

Известны и другие типы генных мутаций. По типу молекулярных изменений выделяют:

делении (от лат. deletio - уничтожение), когда происходит утрата сегмента ДНК размером от одного нуклеотида до гена;

дупликации (от лат. duplicatio - удвоение), т.е. удвоение или повторное дублирование сегмента ДНК от одного нуклеотида до целых генов;

инверсии (от лат. inversio - перевертывание), т.е. поворот на 180° сегмента ДНК размерами от двух нукпеотидов до фрагмента, включающего несколько генов;

инсерции (от лат. insertio - прикрепление), т.е. вставка фрагментов ДНК размером от одного нуклеотида до целого гена.

Молекулярные изменения, затрагивающие от одного до нескольких нуклеотидов, рассматривают как точечную мутацию.

Принципиальным и отличительным для генной мутации является то, что она 1) приводит к изменению генетической информации, 2) может передаваться от поколения к поколению.

Определенная часть генных мутаций может быть отнесена к нейтральным мутациям, поскольку они не приводят к каким-либо изменениям фенотипа. Например, за счет вырожденности генетического кода одну и ту же аминокислоту могут кодировать два триплета, различающихся только по одному основанию. С другой стороны, один и тот же ген может изменяться (мутировать) в несколько различающихся состояний.

Например, ген, контролирующий группу крови системы АВ0. имеет три аллеля: 0, А и В, сочетания которых определяют 4 группы крови. Группа крови системы АВ0 является классическим примером генетической изменчивости нормальных признаков человека.

Именно генные мутации обусловливают развитие большинства Ласледственных форм патологии. Болезни, обусловленные подобными мутациями, называют генными, или моногенными, болезнями, Т. е. заболеваниями, развитие которых детерминируется мутацией одного гена.

Геномные и хромосомные мутации

Геномные и хромосомные мутации являются причинами возникновения хромосомных болезней. К геномным мутациям относятся анеуплоидии и изменение плоидности структурно неизмененных хромосом. Выявляются цитогенетическими методами.

Анеуплоидия — изменение (уменьшение — моносомия, увеличение — трисомия) числа хромосом в диплоидном наборе, некратное гаплоидному (2n + 1, 2n - 1 и т.д.).

Полиплоидия — увеличение числа наборов хромосом, кратное гаплоидному (3n, 4n, 5n и т.д.).

У человека полиплоидия, а также большинство анеуплоидии являются летальными мутациями.

К наиболее частым геномным мутациям относятся:

трисомия — наличие трех гомологичных хромосом в кариотипе (например, по 21-й паре, при синдроме Дауна, по 18-й паре при синдроме Эдвардса, по 13-й паре при синдроме Патау; по половым хромосомам: XXX, ХХY, ХYY);

моносомия - наличие только одной из двух гомологичных хромосом. При моносомии по любой из аутосом нормальное развитие эмбриона невозможно. Единственная моносомия у человека, совместимая с жизнью, - моносомия по Х-хромосоме - приводит (к синдрому Шерешевского-Тернера (45, Х0).

Причиной, приводящей к анеуплоидии, является нерасхождение хромосом во время клеточного деления при образовании половых клеток или утрата хромосом в результате анафазного отставания, когда во время движения к полюсу одна из гомологичных хромосом может отстать от всех других негомологичных хромосом. Термин «нерасхождение» означает отсутствие разделения хромосом или хроматид в мейозе или митозе. Утрата хромосом может приводить к мозаицизму, при котором имеется одна эуплоидная (нормальная) клеточная линия, а другая — моносомная .

Нерасхождение хромосом наиболее часто наблюдается во время мейоза. Хромосомы, которые в норме должны делиться во время мейоза, остаются соединенными вместе и в анафазе отходят к одному полюсу клетки. Таким образом, возникают две гаметы, одна из которых имеет добавочную хромосому, а другая не имеет этой хромосомы. При оплодотворении гаметы с нормальным набором хромосом гаметой с лишней хромосомой возникает трисомия (т. е. в клетке присутствует три гомологичные хромосомы), при оплодотворении гаметой без одной хромосомы возникает зигота с моносомией. Если моносомая зигота образуется по какой-либо аутосомной (не половой) хромосоме, то развитие организма прекращается на самых ранних стадиях развития.

Хромосомные мутации - это структурные изменения отдельных хромосом, как правило, видимые в световом микроскопе. В хромосомную мутацию вовлекается большое число (от десятков до нескольких сотен) генов, что приводит к изменению нормального диплоидного набора. Несмотря на то что хромосомные аберрации, как правило, не изменяют последовательность ДНК в специфических генах, изменение числа копий генов в геноме приводит к генетическому дисбалансу вследствие недостатка или избытка генетического материала. Различают две большие группы хромосомных мутаций: внутрихромосомные и межхромосомные.

Внутрихромосомные мутации — это аберрации в пределах одной хромосомы. К ним относятся:

делеции (от лат. deletio — уничтожение) - утрата одного из участков хромосомы, внутреннего или терминального. Это может обусловить нарушение эмбриогенеза и формирование множественных аномалий развития (например, деления в регионе короткого плеча 5-й хромосомы, обозначаемая как 5р-, приводит к недоразвитию гортани, порокам сердца, отставанию умственного развития). Этот симптомокомплекс известен как синдром «кошачьего крика», поскольку у больных детей из-за аномалии гортани плач напоминает кошачье мяуканье;

инверсии (от лат. inversio — перевертывание). В результате двух точек разрывов хромосомы образовавшийся фрагмент встраивается на прежнее место после поворота на 180°. В результате нарушается только порядок расположения генов;

дупликации (от лат duplicatio — удвоение) — удвоение (или умножение) какого-либо участка хромосомы (например, трисомия по одному из коротких плеч 9-й хромосомы обуслошшвает множественные пороки, включая микроцефалию, задержку физического, психического и интеллектуального развития).

Схемы наиболее частых хромосомных аберраций:
Делении: 1 - концевая; 2 - интерстициальная. Инверсии: 1 - перицентрическая (с захватом центромеры); 2 - парацентрическая (в пределах одного плеча хромосомы)

Межхромосомные мутации, или мутации перестройки — обмен фрагментами между негомологичными хромосомами. Такие мутации получили название транслокации (от лат. tгаns — за, через + locus — место). Это:

Реципрокная транслокация, когда две хромосомы обмениваются своими фрагментами;

Нереципрокная транслокация, когда фрагмент одной хромосомы транспортируется на другую;

- «центрическое» слияние (робертсоновская транслокация) - соединение двух акроцентрических хромосом в районе их центромер с потерей коротких плеч.

При поперечном разрыве хроматид через центромеры «сестринские» хроматиды становятся «зеркальными» плечами двух разных хромосом, содержащих одинаковые наборы генов. Такие хромосомы называют изохромосомами. Как внутрихромосомные (делеции, инверсии и дупликации), так и межхромосомные (транслокации) аберрации и изохромосомы связаны с физическими изменениями структуры хромосом, в том числе с механическими разломами.

Наследственная патология как результат наследственной изменчивости

Наличие общих видовых признаков позволяет объединять всех людей на земле в единый вид Homo sapiens. Тем не менее мы без труда, одним взглядом выделяем лицо знакомого нам человека в толпе незнакомых людей. Чрезвычайное разнообразие людей — как внутри групповое (например, разнообразие в пределах этноса), так и межгрупповое — обусловлено генетическим их отличием. В настоящее время считается, что вся внутривидовая изменчивость обусловлена различными генотипами, возникающими и поддерживаемыми естественным отбором.

Известно, что гаплоидный геном человека содержит 3,3х10 9 пар нуклеотидных остатков, что теоретически позволяет иметь до 6-10 млн генов. Вместе с тем данные современных исследований свидетельствуют, что в геноме человека содержится примерно 30-40 тыс. генов. Около трети всех генов имеют более чем один аллель, т. е. являются полиморфными.

Концепция наследственного полиморфизма была сформулирована Э. Фордом в 1940 г. для объяснения существования в популяции двух или более различающихся форм, когда частота наиболее редкой из них не может быть объяснена только мутационными событиями. Поскольку мутация гена является редким событием (1х10 6), частоту мутантного аллеля, составляющую более 1%, можно объяснить только его постепенным накоплением в популяции за счет селективных преимуществ носителей данной мутации.

Многочисленность расщепляющихся локусов, многочисленность аллелей в каждом из них наряду с явлением рекомбинации создает неисчерпаемое генетическое разнообразие человека. Расчеты свидетельствуют, что за всю историю человечества на земном шаре не было, нет и в обозримом будущем не встретится генетического повторения, т.е. каждый рожденный человек является уникальным явлением во Вселенной. Неповторимость генетической конституции во многом определяет особенности развития заболевания у каждого конкретного человека.

Человечество эволюционировало как группы изолированных популяций, длительное время проживающих в одних и тех же условиях окружающей среды, включая климатогеографические характеристики, характер питания, возбудителей болезней, культурные традиции и т.д. Это привело к закреплению в популяции специфических для каждой из них сочетаний нормальных аллелей, наиболее адекватных условиям среды. В связи с постепенным расширением ареала обитания, интенсивными миграциями, переселением народов возникают ситуации, когда полезные в определенных условиях сочетания конкретных нормальных генов в других условиях не обеспечивают оптимальное функционирование некоторых систем организма. Это приводит к тому, что часть наследственной изменчивости, обусловленная неблагоприятным сочетанием непатологических генов человека, становится основой развития так называемым болезней с наследственным предрасположением.

Кроме того, у человека как социального существа естественный отбор со временем протекал во все более специфических формах, что также расширяло наследственное разнообразие. Сохранялось то, что могло отметаться у животных, или, наоборот, терялось то, что животные сохраняли. Так, полноценное обеспечение потребностей в витамине С привело в процессе эволюции к утере гена L-гулонодактоноксидазы, катализирующей синтез аскорбиновой кислоты. В процессе эволюции человечество приобретало и нежелательные признаки, имеющие прямое отношение к патологии. Например, у человека в процессе эволюции появились гены, определяющие чувствительность к дифтерийному токсину или к вирусу полиомиелита.

Таким образом, у человека, как и у любого другого биологического вида, нет резкой грани между наследственной изменчивостью, ведущей к нормальным вариациям признаков, и наследственной изменчивостью, обусловливающей возникновение наследственных болезней. Человек, став биологическим видом Homo sapiens, как бы заплатил за «разумность» своего вида накоплением патологических мутаций. Это положение лежит в основе одной из главных концепций медицинской генетики об эволюционном накоплении патологических мутации в популяциях человека.

Наследственная изменчивость популяций человека, как поддерживаемая, так и уменьшаемая естественным отбором, формирует так называемый генетический груз.

Некоторые патологические мутации могут в течение исторически длительного времени сохраняться и распространяться в популяциях, обусловливая гак называемый сегрегационный генетический груз; другие патологические мутации возникают в каждом поколении как результат новых изменений наследственной структуры, создавая мутационный груз.

Отрицательный эффект генетического груза проявляется повышенной летальностью (гибель гамет, зигот, эмбрионов и детей), снижением фертильности (уменьшенное воспроизводство потомства), уменьшением продолжительности жизни, социальной дизадаптацией и инвалидизацией, а также обусловливает повышенную необходимость в медицинской помощи.

Английский генетик Дж.Ходдейн был первым, кто привлек внимание исследователей к существованию генетического груза, хотя сам термин был предложен Г. Меллером еще в конце 40-х гг. Смысл понятия «генетический груз» связан с высокой степенью генетической изменчивости, необходимой биологическому виду для того, чтобы иметь возможность приспосабливаться к изменяющимся условиям среды.

Комбинативная изменчивость

Носит наследственный характер и обусловлена рекомбинацией генов в генотипе. Связана не с изменением генов, а с их сочетанием! Комбинации генов способствуют повышению выживаемости в изменяющихся условиях среды.

Случайное сочетание гамет при оплодотворении

Обмен участками гомологичных хромосом при кроссинговере в профазе мейоза 1

Независимое расхождение разных пар хромосом в анафазе мейоза 1, приводящее к образованию генетически разнообразных гамет

Мутационная изменчивость

Мутации - внезапные скачкообразные стойкие изменения генотипа, происходящие под влиянием факторов внешней или внутренней среды, передаются по наследству. На молекулярном уровне это изменение ДНК, сохраняющееся при репликации НК. Мутагенез - процесс образования мутации. Мутагенные факторы вызывают мутации, по своей природе могут быть

- физические мутагены: излучения а, в, гамма, УФ, температура, влажность,

- химические мутагены: органика и неорганика, наркотические вещества, продукты промышленной переработки природных соединений (уголь, нефть), синтетические вещества, ранее не встречавшиеся в природе (пестициды, инсектициды, гербециды), пищевые консерванты, лекарства. Обладают высокой проникающей способностью, вызывают генныне мутации и действуют в период репликации ДНК.

Классификация мутаций по условиям возникновения

Спонтанные возникают без видимых причин, или причины неизвестны.

Индуцированные возникают в результате воздействия.

Классификация мутаций по локализации в клетке

Ядерные – мутации в ядре клетки

Цитоплазматические - мутации в митохондриях и пластидах.

Классификация мутаций по возможности наследования

Генеративные возникают в половых клетках, передаются по наследству при половом размножении

Соматические возникают в соматических клетках, передаются по наследству при вегетативном размножении

Классификация мутаций по степени влияния на жизнь способность и плодовитость

Стерильные влияют на плодовитость

Летальные приводят к смерти

Полулетальные снижают жизнеспособность

Нейтральные не влияют на жизнеспособность

Положительные повышают жизнеспособность

Классификация по уровню поражения генетического материала:

Генные – изменение гена

Хромосомные – изменение строения хромосомы,

Геномные – изменение генома

Генные мутации

Точковые, приводят к изменению нуклеотидной структуры ДНК в гене. Изменение структуры генов при замене оснований бывет 2 типов: миссенс мутации с заменой аминокислоты, нонсенс с образованием терминальных кодонов УАА, УАГ, УГА.

- сдвиг рамки считывания происходит в случае вставки или выпадения нескольких нуклеотидов. В результате изменяется разбиение мРНК на кодоны, а значит, меняется аминокислотная последовательность в синтезируемой молекуле белка или же синтез преждевременно заканчивается.

- транзиция - замена пуринового основания на другое пуриновое, а пиримидинового другим пиримидиновым: А <--> Г и Ц <--> Т.

- трансверзия - замена пуринового на пиримидиновое и наоборот.

Хромосомные мутации

Абберации – изменение структуры хромосом вследствие нарушения их целостности: разрывы, которые сопровождаются перестройками генов, приводят к внутри/меж хромосомным мутациям.

- делеция - утрата участка хромосомы: AEF. Делеция короткого плеча 5 ой хромосомы у человека - синдром кошачьего крика.

- дупликация - удвоение участка хромосомы: ABCDCD, с появлением дополнительного наследственного материала, идентичного тому, что уже есть в геноме.

Делеция и дупликация всегда проявляются фенотипически, поскольку изменяется набор генов и наблюдается моносомия по части хромосом.

- инверсия – поворот отдельных участков хромосомы на 180*. ABCDEF -----> AEDCBF

- транслокация – перенос отдельного участка хромосомы в другое место той же или иной хромосомы: ABCKLM. При этом число генов не изменяется !!! Перенос плеча 21 ой хромосомы на 13, 14, 15 приводит к развитию синдрома Дауна.

Инверсии и транслокации могут не проявляться фенотипически, если не происходит изменение генетического материала и сохраняется общий баланс генов в геноме. Зато затрудняется конъюгация гомологичных хромосом, что может служить причиной нарушения генетического материала между дочерними клетками

Геномные мутации

Связаны с изменением числа хромосом, приводят к добавлению или утрате одной, нескольких или полного набора хромосом.

Геном - совокупность генов гаплоидного набора хромосом. Как правило, находится в половых клетках.

- полиплоидия - кратное гаплоидному увеличение числа хромосом в клетках. Часто используется в селекции растений, как правило, приводит к увеличению урожайности. Часто встречается среди покрытосеменных растений, реже - среди голосеменных. Среди животных полиплоидия известна у гермафродитов: червей, ракообразных, насекомых, рыб, саламандр. Для млекопитающих полиплоидия летальна.

- гаплоидия - кратное гаплоидному уменьшение числа хромосом. В результате в клетке присутствует одинарный набор хромосом n. Организм с гаплоидным набором негомологичных хромосом в соматических клетках - гаплоид. Естественная гаплоидия встречается в жизненном цикле спорообразующих грибов, бактерий, одноклеточных водорослей, у трутней пчел. Жизнеспособность гаплоидов снижается, тк проявляются все рецессивные гены, содержащиеся в единственном числе. Для млекопитающих гаплоидия летальна.

- анеуплоидия - некратное изменение числа хромосом.

Трисомия – увеличение кариотипа на одну хромосому (2n+1).

Полисомия – увеличение кариотипа больше чем на одну хромосому.

Моносомия – уменьшение кариотипа на одну хромосому (2n-1).

Нулисомия – отсутствие пары хромосом, летальна.

Хромосомные болезни человека

Группы заболеваний, связанные с изменением числа хромосом (геномные мутации) или их структурой (хромосомные абберации). Они возникают в результате нарушения хромосомного набора в зиготе из-за нерасхождения хромосом при редукционном делении, и различных хромосомных аббераций.

триплоидия - нарушение хромосомного набора 3n. Новорожденные дети погибают в первые часы или дни после рождения.

трисомия по Х-хромосоме - ХХХ. Фенотип нормальный женский, характерно недоразвитие половых желез, небольшая степень умственной отсталости.

Синдром Клайнфельтера - ХХУ, ХХХУ, ХХХХУ, ХУУ, ХУУУ, ХХУУ, ХХХУУ. Фенотип мужской - недоразвитые семенники. Во внешнем облике присутствуют свойственные женщинам узкие плечи, широкий таз, геникомастия, отложение жира по жентипу. Полисомия по У-хромосоме дает высокий рост, антиобщественное поведение.

Синдром Шерешевского-Тернера : нарушение хромосомного набора Х0, единственная жизнеспособная моносомия по Х-хромосоме у человека. Фенотип женский, строение тела непропорциональное, кожные складки на шее, задержка роста, недоразвитые внутренние половые органы, бесплодие, преждевременное старение.

Синдром Дауна : трисомия по 21 ой хромосоме. Низкий рост, маленькая круглая голова, плоский затылок, низко посаженные уши, косой разрез глаз, короткий нос с плоской переносицей, полуоткрытый рот, толстый язык, низкий мышечный тонус, укороченные пальцы, кривые мизинцы, вялые и неуклюжие люди. Резко выраженная умственная отсталость, плохо развитая речь, сниженный иммунитет и продолжительность жизни.

Синдром Патау : трисомия по 13 ой хромосоме. Глубокие идиоты. Недоразвитая ЦНС, умеренная микроцефалия, помутнение роговицы, низкий лоб, запавшее переносье, узкие глазницы, двусторонняя расщелина верхней губы и неба, аномалии развития ОДС и внутренних органов. Умирают в возрасте до года, до 3 лет доживают единицы.

Синдром Эдвардса : трисомия по 18 ой хромосоме. Аномалии черепа и лица: узкий лоб с западением лобных костей в области родничка, широкий выступающий затылок, маленькая нижняя челюсть и ротовое отверстие, узкие и короткие глазные щели, низкое расположение ушей, грудина короткая, широкая грудная клетка, аномальное развитие стопы, патологии строения сердца и кровеносных сосудов, пищеварительной системы, мозжечка. Большинство умирает в возрасте до года.

Заполните заявку на подготовку к ЕГЭ по биологии или химии

Краткая форма обратной связи

Мутации (от лат. mutatio - изменять) - это передава­ емые по наследству структурные изменения генов.

Крупные мутации (геномные перестройки) сопро­ вождаются выпадением или изменением относительно крупных участков генома - такие мутации, как правило, необратимы.

Мелкие (точковые) мутации связаны с выпадением или добавлением отдельных нуклеотидов ДНК. При этом изменяется лишь небольшое число признаков. Такие измененные бактерии могут полностью возвращаться в исходное состояние (ревертировать).

Бактерии с измененными признаками называются му­ тантами. Факторы, вызывающие образование мутантов, носят название мутагенов.

Бактериальные мутации делят на спонтанные и индуци­ рованные. Спонтанные (самопроизвольные) мутации возникают под влиянием неконтролируемых факторов, т. е. без вмешательства экспериментатора. Индуциро­ ванные (направленные) мутации появляются в результа­ те обработки микроорганизмов специальными мутагенами (химическими веществами, излучением, температурой и

В результате бактериальных мутаций могут отмечать­ся: а) изменение морфологических свойств б) изменение культуральных свойств в) возникновение у микроорганиз­мов устойчивости к лекарственным препаратам г) потеря способности синтезировать аминокислоты, утилизировать углеводы и другие питательные вещества д) ослабление болезнетворных свойств и т. д.

Если мутация приводит к тому, что мутагенные клетки обретают по сравнению с остальными клетками популяций преимущества, то формируется популяция из мутантных клеток и все приобретенные свойства передаются по наследству. Если же мутация не дает клетке преимуществ, то мутантные клетки, как правило, погибают.

Трансформация. Клет­ ки, которые способны воспринять ДНК другой клетки в процессе трансформации, называются компетентными.

Трансдукция - это перенос генетической информа­ ции (ДНК) от бактерии донора к бактерии реципиенту при участии бактериофага. Трансдуцирующими свойствами обладают в основном умеренные фаги. Размножаясь в бактериальной клетке, фаги включают в состав своей ДНК часть бактериальной ДНК и передают ее реци­пиенту.

Различают три типа трансдукции: общую, специфи­ ческую и абортивную.

1 . Общая трансдукция - это передача различных генов, локализованных на разных участках бактериальной хромосомы.

При этом бактерии доноры могут передать реципиенту разнообразные признаки и свойства- способность образовывать новые ферменты, устойчивость к лекарственным препаратам и т. д.

2. Специфическая трансдукция - это передача фагом только некоторых специфических генов, локализо­ванных на специальных участках бактериальной хромосо­ мы. В этом случае передаются только определенные признаки и свойства.

3. Абортивная трансдукция - перенос фагом ка­ кого-то одного фрагмента хромосомы донора. Обычно этот фрагмент не включается в хромосому клетки реципи­ента, а циркулирует в цитоплазме. При делении клетки реципиента этот фрагмент передается только одной из двух дочерних клеток, а второй клетке достается неизме­ ненная хромосома реципиента.

С помощью трансдуцирующих фагов можно передать от одной клетки другой целый ряд свойств, таких как способность образовывать токсин, споры, жгутики, проду­ цировать дополнительные ферменты, устойчивость к ле­карственным препаратам и т. д.

Конъюгация - это передача генетического матери­ ала от одной бактерии к другой при непосредственном контакте клеток. Клетки, передающие генетический мате­ риал, называются донорами, воспринимающие его - реципиентами. Этот процесс носит односторонний характер - от клетки донора к клетке реципиента.

Бактерии донора обозначаются F + (мужской тип), а бактерии реципиента - F - (женский тип). При тесном сближении клеток F + и F - между ними возникает цитоплазматический мостик. Образование мостика контро­ лируется фактором F (от англ. Fertility - плодовитость). Этот фактор содержит гены, ответственные за образова­ ние половых ворсинок (sex - pili). Функцию донора могут выполнять только те клетки, которые содержат фактор F . Клетки реципиента лишены этого фактора. При скрещива­ нии фактор F передается клеткой донора реципиенту. Получив фактор F , женская клетка сама становится донором (F +).

Процесс конъюгации можно прервать механическим способом, например встряхиванием. В этом случае реципи­ ент получает неполную информацию, заключенную в ДНК.

Конъюгация, как и другие виды рекомбинации, может осуществляться не только между бактериями одного и того же вида, но и между бактериями разных видов. В этих случаях рекомбинация называется межви­ довой.

Плаз миды - это сравнительно небольшие внехромо-сомные молекулы ДНК бактериальной клетки. Они распо­ложены в цитоплазме и имеют кольцевую структуру. В плазмидах содержится несколько генов, функциониру ющих независимо от генов, содержащихся в хромосомной ДНК.

Профаги, вызывающие у лизогенной клетки ряд изме­ нений, передающихся по наследству, например способ­ ность образовывать токсин (см. трансдукцию).

F -фактор, находящийся в автономном состоянии и принимающий участие в процессе конъюгации (см. конъ­ югацию).

R -фактор, придающий клетке устойчивость к лекар­ ственным препаратам (впервые R -фактор был выделен из кишечной палочки, затем из шигелл). Исследования пока­зали, что R -фактор может быть удален из клетки, что вообще характерно для плазмид.

К-фактор обладает внутривидовой, межвидовой и даже межродовой трансмиссивностью, что может явиться при­чиной формирования трудно диагностируемых атипичных штаммов.

Бактериоциногенные факторы (col -факторы), которые впервые были обнаружены в культуре кишечной палочки (E . coli), в связи с чем названы колицинами. В дальней­ шем они были выявлены и у других бактерий: холерного вибриона - вибриоцины, стафилококков - стафилоцины и др.

Со l -фактор - это маленькая автономная плазмида, ко­торая детерминирует синтез белковых веществ, способ­ ных вызывать гибель бактерий собственного вида или близкородственного. Бактериоцины адсорбируются на по­верхности чувствительных клеток и вызывают нарушения метаболизма, что приводит клетку к гибели.

В естественных условиях только единичные клетки в популяции (1 на 1000) спонтанно продуцируют колицин. Однако при некоторых воздействиях на культуру (обра­ботка бактерий УФ-лучами) количество колицинпродуцйрующих клеток увеличивается.

ПРАКТИЧЕСКОЕ ЗНАЧЕНИЕ ИЗМЕНЧИВОСТИ микроорганизмов

Еще Пастер искусственным путем получил необрати­мые изменения у возбудителей бешенства, сибирской язвы и приготовил вакцины, предохраняющие от этих заболеваний. В дальнейшем исследования в области генетики и изменчивости микроорганизмов позволили получить большое число бактериальных и вирусных штаммов, используемых для получения вакцин.

Результаты исследования генетики микроорганизмов с успехом были использованы для выяснения закономерностей наследственности высших организмов.

Большое научное и практическое значение имеет также новый раздел генетики - генная инженерия.

Методы генной инженерии позволяют изменять структуру генов и включать в хромосому бактерий гены других организмов, ответственных за синтез важных и нужных веществ. В результате микроорганизмы становятся продуцентами таких веществ, получение которых химическим путем представляет очень сложную, а иногда даже невозможную задачу. Этим путем в настоящее время получают такие медицинские препараты, как инсулин, интерферон и др. При использовании мутагенных факторов и селекции были получены мутанты-продуценты антибиотиков, которые в 100-1000 раз активнее исходных.

9. Генетика иммунитета

Генетическая детерминированность иммунной реакции организма высших животных

Механизм синтеза моноспецифических антител и иммунная память

Наследуемость уровня иммунной реакции организма и возможности селекции животных по устойчивости к инфекциям.

Иммунитет – это невосприимчивость организма к инфекционным агентам и генетически чужеродным веществам антигенной природы. Главная функция иммунитета – иммунологический надзор за внутренним постоянством (гомеостазом) организма.

Следствием этой функции является распознавание, а потом блокирование, нейтрализация или уничтожение генетически чужеродных веществ (вирусов, бактерий, раковых клеток и т.д.). За сохранение генетически обусловленной биологической индивидуальности отвечает иммунная система организма – совокупность всех лимфоидных клеток (специфический фактор защиты). К неспецифическим факторам защиты относят кожные и слизистые покровы. Иммунный ответ, или иммунологическая реактивность – форма реакций организма на чужеродные вещества (антигены). Главной функцией антител является их способность вступать в быструю реакцию с антигеном в виде реакции глютинации, преципитации, лизиса, нейтрализации.

10. Группы крови и биохимический полиморфизм.

Понятие о группах крови

Наследуемость групп крови

Практическое применение групп крови в животноводстве

Полиморфные системы белков и их связь с продуктивностью животных

Методы определения групп крови и полиморфных систем белков.

Группы крови были открыты в 1900 г. (у человека) и объяснены в 1924 г. А в 1936 году использован термин иммуногенетика. В пределах вида особи различаются по ряду охимических, генетически детерминируемых признаков, которые могут быть выявлены иммуногенетически в виде антигенов (генетически чужеродные вещества, при введении их в организм вызывают иммуногенетических реакций). Антитела – иммуноглобулины (белки), образующие в организме под воздействием антигенов, различия в групповой принадлежности крови определяются антигенами, расположенными на поверхности эритроцитов. Антигенные факторы иногда называют кровяными факторами, сумму всех групп крови одной особи – типом крови. После рождения группы крови у животных не меняется. Генетические системы групп крови и антигены обозначают прописными и строчными буквами – А,В,С и т.д. Количество антигенов много, поэтому пишут со значками А, В, С, и с подстрочными индексами А1, А2 и т.д.

Главная | О нас | Обратная связь

ГЕНОТИПИЧЕСКАЯ (НАСЛЕДУЕМАЯ) ИЗМЕНЧИВОСТЬ

Генотипическая изменчивость может возникать в резуль­тате мутаций и генетических рекомбинаций.

Мутации (от лат. mutatio - изменять) - это передаваемые по наследству структурные изменения генов.

Крупные мутации (геномные перестройки) сопро­вождаются выпадением или изменением относительно крупных участков генома -такие мутации, как правило, необратимы.

Мелкие (точковые) мутации связаны с выпадением или добавлением отдельных оснований ДНК. При этом изменяется лишь небольшое число признаков. Такие измененные бактерии могут полностью возвращаться в исходное состояние (ревертировать).

Бактерии с измененными признаками называются му­тантами. Факторы, вызывающие образование мутантов, носят название мутагенов.

Бактериальные мутации делят на спонтанные и индуци­рованные. Спонтанные (самопроизвольные) мутации возникают под влиянием неконтролируемых факторов, т.е. без вмешательства экспериментатора. Индуцированные (направленные) мутации появляются в результа­те обработки микроорганизмов специальными мутагенами (химическими веществами, излучением, температурой и др.).

В результате бактериальных мутаций могут отмечать­ся:

а) изменение морфологических свойств

б) изменение культуральных свойств

в) возникновение у микроорганиз­мов устойчивости к лекарственным препаратам

г) потеря способности синтезировать аминокислоты, утилизировать углеводы и другие питательные вещества

д) ослабление болезнетворных свойств и т. д.

Если мутация приводит к тому, что мутагенные клетки обретают по сравнению с остальными клетками популяций преимущества, то формируется популяция из мутантных клеток, и все приобретенные свойства передаются по наследству. Если же мутация не дает клетке преимуществ, то мутантные клетки, как правило, погибают. Генетические рекомбинации. Трансформация. Клет­ки, которые способны воспринять ДНК другой клетки в процессе трансформации, называются компетентными. Состояние компетентности часто совпадает с логарифмиче­ской фазой роста.

Трансдукция - это перенос генетической информа­ции от бактерии донора к бактерии реципиенту при участии бактериофага. Трансдуцирующими свойствами обладают, в основном, умеренные фаги. Размножаясь в бактериальной клетке, фаги включают в состав своей ДНК часть бактериальной ДНК и передают ее реципиенту. Различают три типа трансдукции: общую, специфи­ческую и абортивную.

1. Общая трансдукция - это передача различных генов, локализованных на разных участках бактериальной хромосомы. При этом бактерии доноры могут передать реципиенту разнообразные признаки и свойства - способность образовывать новые ферменты, устойчивость к лекарственным препаратам и т. д.

2. Специфическая трансдукция - это передача
фагом только некоторых специфических генов, локализо­ванных на специальных участках бактериальной хромосо­мы. В этом случае передаются только определенные признаки и свойства.

3. Абортивная трансдукция - перенос фагом какого-то одного фермента хромосомы донора. Обычно этот фрагмент не включается в хромосому клетки реципиента, а циркулирует в цитоплазме. При делении клетки реципиента этот фрагмент передается только одной из двух дочерних клеток, а второй клетке достается неизме­ненная хромосома реципиента.

С помощью трансдуцирующих фагов можно передать от одной клетки другой целый ряд свойств, таких как способность, образовывать токсин, споры, жгутики, продуцировать дополнительные ферменты, устойчивость к ле­карственным препаратам и т. д.

Конъюгация - это передача генетического материла от одной бактерии к другой при непосредственном контакте клеток. Клетки, передающие генетический мате­риал, называются донорами, воспринимающие его - реципиентами. Этот процесс носит односторонний характер - от клетки донора к клетке реципиента.

Бактерии донора обозначаются F+ (мужской тип), а бактерии реципиента - F- (женский тип). При тесном сближении клеток F+ и F- между ними возникает цитоплазматический мостик. Образование мостика контро­лируется фактором F (от англ. fertility -- плодовитость). Этот фактор содержит гены, ответственные за образова­ние половых ворсинок (sex-pili). Функцию донора могут выполнять только те клетки, которые содержат фактор F. Клетки реципиента лишены этого фактора. При скрещива­нии фактор F передается клеткой донора реципиенту. Получив фактор F, женская клетка сама становится донором (F+).

Процесс конъюгации можно прервать механическим способом, например, встряхиванием. В этом случае реципи­ент получает неполную информацию, заключенную в ДНК.

Перенос генетической информации путем конъюгации лучше всего изучен у энтеробактерий.

Конъюгация, как и другие виды рекомбинации, может осуществляться не только между бактериями одного и того же вида, но и между бактериями разных видов, В этих случаях рекомбинация называется межви­довой.

Генотипическая изменчивость наследуемая

Плазмиды – это сравнительно небольшое внехромосомное молекулы ДНК бактериальной клетки. Они распо­ложены в цитоплазме и имеют кольцевую структуру. В плазмидах содержится несколько генов, функционирующих независимо от генов, содержащихся в хромосомной ДНК.

Рис.54 Плазмиды (внехромосомные молекулы ДНК)

Типичным признаком плазмид служит их способность к самостоятельному воспроизведению (репликации).

Они могут также переходить из одной клетки в другую и включать в себя новые гены из окружающей среды. К числу плазмид относятся:

Профаги. вызывающие у лизогенной клетки ряд изме­нений, передающихся по наследству, например способ­ность образовывать токсин (см. трансдукцию). F-фактор, находящийся в автономном состоянии и принимающий участие в процессе конъюгации (см. конъ­югацию).

R-фактор, придающий клетке устойчивость к лекар­ственным препаратам (впервые R-фактор был выделен из кишечной палочки, затем из шигелл). Исследования пока­зали, что R-фактор может быть удален из клетки, что вообще характерно для плазмид.

R-фактор обладает внутривидовой, межвидовой и даже межродовой трансмиссивностью, что может явиться причиной формирования трудно диагностируемых атипичных штаммов.

Бактериоциногенные факторы (col-факторы), которые впервые были обнаружены в культуре кишечной палочки (Е. coli), в связи с чем названы колицинами. В дальней­шем они были выявлены и у других бактерий: холерного вибриона - вибриоцины, стафилококков - стафилоцины и др.

Col-фактор - это маленькая автономная плазмида, ко­торая детерминирует синтез белковых веществ, способ­ных вызывать гибель бактерий собственного вида или близкородственного. Бактериоцины адсорбируются на по­верхности чувствительных клеток и вызывают нарушения метаболизма, что приводит клетку к гибели.

В естественных условиях только единичные клетки в популяции (1 на 1000) спонтанно продуцируют колицин. Однако при некоторых воздействиях на культуру (обра­ботка бактерий УФ-лучами) количество колицинпродуцирующих клеток увеличивается.

Изменения функциональных генов

По мутировавшим клеткам мутации могут быть соматические (например, разный цвет глаз у одного человека) и генеративные (или гаметические). Генеративные мутации передаются потомству, соматические проявляются у самой особи. Они передаются по наследству только при вегетативном размножении.

По исходу (значению) для организма выделяют мутации положительные, нейтральные и отрицательные. Положительные мутации появляются редко. Они повышают жизнеспособность организма и имеют значение для эволюции (например, мутации, приводящие к появлению четырехкамерного сердца в процессе эволюции хордовых). Нейтральные мутации практически не влияют на процессы жизнедеятельности (например, мутации, приводящие к наличию веснушек). Отрицательные мутации делят на полулетальные и летальные. Полулетальные мутации снижают жизнеспособность организма, сокращают срок его жизни (например, мутации, приводящие к болезни Дауна). Летальные мутации вызывают
смерть организма до рождения или в момент рождения (например, мутации, приводящие к отсутствие головного мозга).

По изменению фенотипа мутации бывают морфологические (например, уменьшенные глазные яблоки, шесть пальцев на руке) и биохимические (например, альбинизм, гемофилия).

По изменению генотипа выделяют мутации геномные, хромосомные и генные.

Геномные мутации – это изменение числа хромосом под действием факторов среды. Гаплоидия – набор хромосом 1n. В природе она встречается у трутней (самцов) пчел. Жизнеспособность таких организмов снижена, так как у них проявляются все рецессивные гены.

Полиплоидия – увеличение гаплоидного набора хромосом (3n, 4n, 5n). Полиплоидия используется в растениеводстве. Она приводит к повышению урожайности. Для человека гаплоидия и полиплоидия это летальные мутации.

Анеуплоидия – это изменение числа хромосом в отдельных парах (2n±1, 2n±2 и так далее).

Трисомия. например, если к паре половых хромосом женского организма добавляется Х-хромосома, развивается синдром трисомии Х (47, ХХХ), если она добавляется к половым хромосомам мужского организма, развивается синдром Клайнфельтера (47, ХХY). Моносомия. отсутствие одной хромосомы в паре – 45, Х0 – синдром Шерешевского-Тернера. Нулисомия. отсутствие пары гомологичных хромосом (для человека – летальная мутация).

Хромосомные мутации (или хромосомные аберрации) – это изменения структуры хромосом (межхромосомные или внутрихромосомные). Перестройки внутри одной хромосомы называются инверсии, нехватки (дефишенси и делеции), дупликации. Межхромосомные перестройки называются транслокации.

Примеры: делеция – синдром кошачьего крика у человека дупликация – появление полосковидных глаз у дрозофилы инверсия – изменение порядка расположения генов.

Транслокации могут быть: реципрокные – две хромосомы обмениваются сегментами нереципрокные – сегменты одной хромосомы переносятся на другую робертсоновские – две акроцентрические хромосомы соединяются своими центромерными участками.

Нехватки и дупликации всегда проявляются фенотипически, так как изменяется набор генов. Не всегда проявляются инверсии и транслокации. В этих случаях затрудняется конъюгация гомологичных хромосом и нарушается распределение генетического материала между дочерними клетками.

Генные мутации называются точковые, или трансгенации. Они связаны с изменениями структуры генов и вызывают развитие болезней обмена веществ (их частота 2-4%).

Изменения структурных генов.

1. Сдвиг рамки считывания происходит в случае выпадения или вставки одной или нескольких пар нуклеотидов в молекулу ДНК.

2. Транзиция – мутация, при которой происходит замена пуринового основания на пуриновое или пиримидинового на пиримидиновое (А Г или Ц Т). Такая замена приводит к изменению кодонов.

3. Трансверсия – замена пуринового основания на пиримидиновое или пиримидинового на пуриновое (А Ц Г Т) – приводит к изменению кодонов. Изменение смысла кодонов приводит к мисценс-мутациям. Если образуются бессмысленные кодоны (УАА, УАГ, УГА), они вызывают нонсенс-мутации. Эти кодоны не определяют аминокислоты, а являются терминаторами – они определяют конец считывания информации.

1. Изменен белок-репрессор, он не подходит к гену-оператору. В этом случае структурные гены не выключаются и работают постоянно.

2. Белок-репрессор плотно присоединяется к гену-оператору и не «снимается» индуктором. Структурные гены постоянно не работают.

3. Нарушение чередования процессов репрессии и индукции. Если индуктор отсутствует, специфический белок синтезируется, в присутствии индуктора он не синтезируется. Такие нарушения работы транскриптонов наблюдаются при мутациях гена-регулятора или гена-оператора.

В настоящее время описано около 5 000 болезней обмена веществ, причиной которых являются генные мутации. Примерами их могут быть фенилкетонурия, альбинизм, галактоземия, различные гемофилии, серповидно-клеточная анемия, ахондроплазия и др.

В большинстве случаев генные мутации проявляются фенотипически.

Наследственность и изменчивость. Хромосомная теория наследственности

Наследственность - это важнейшая особенность живых организмов, заключающаяся в способности передавать свойства и функции родителей потомкам. Эта передача осуществляется с помощью генов.

Ген - единица хранения, передачи и реализации наследственной информации. Ген представляет собой специфический участок молекулы ДНК, в структуре которого закодирована структура определенного полипептида (белка). Вероятно, многие участки ДНК не кодируют белки, а выполняют регулирующие функции. Во всяком случае в структуре генома человека только около 2% ДНК представляют собой последовательности, на основе которых идет синтез информационной РНК (процесс транскрипции), которая затем определяет последовательность аминокислот при синтезе белков (процесс трансляции). В настоящее время полагают, что в геноме человека имеется около 30 тыс. генов.

Гены расположены на хромосомах, которые находятся в ядрах клеток и представляют собой гигантские молекулы ДНК.

Хромосомная теория наследственности была сформулирована н 1902 г. Сэттоном и Бовери. Согласно этой теории хромосомы являются носителями генетической информации, определяющей наследственные свойства организма. У человека в каждой клетке имеется 46 хромосом, разделенных на 23 пары. Хромосомы, образующие пару, называются гомологичными.

Половые клетки (гаметы) образуются с помощью особого типа деления - мейоза. В результате мейоза в каждой половой клетке остается только по одной гомологичной хромосоме из каждой пары т.е. 23 хромосомы. Такой одинарный набор хромосом называется гаплоидным. При оплодотворении, когда сливаются мужская и женская половые клетки и образуется зигота, двойной набор, который называется диплоидным, восстанавливается. В зиготе у организма который из нее развивается, одна хромосома из каждой нары получена от отцовского организма, другая - от материнского.

Генотип - это совокупность генов, полученных организмом от родителей.

Другое явление, которое изучает генетика - изменчивость. Под изменчивостью понимают способность организмов приобретать новые признаки - различия в пределах вида. Выделяют две формы изменчивости:
- наследственную
- модификационную (ненаследственную).

Наследственная изменчивость - это форма изменчивости вызванная изменениями генотипа, которые могут быть связаны с мутационной либо комбинативной изменчивостью.

Мутационная изменчивость.
Гены время от времени подвергаются изменениям, которые получили название мутаций. Эти изменения имеют случайный характер и появляются спонтанно. Причины возникновения мутаций могут быть самыми разнообразными. Имеется целый ряд факторов воздействие которых повышает вероятность возникновения мутации. Это может быть воздействие определенных химических веществ радиации, температуры и т.д. С помощью этих средств можно вызывать мутации, однако случайный характер их возникновения сохраняется, и предсказать появление той или иной мутации невозможно.

Возникшие мутации передаются потомкам, т. е. определяют наследственную изменчивость, которая связанна с тем, где произошла мутация. Если мутация произошла в половой клетке то у нее есть возможность передаться потомкам, т.е. быть унаследованной. Если же мутация произошла в соматической клетке, то она передается только тем из них, которые возникают из этой соматической клетки. Такие мутации называются соматическими, они не передаются по наследству.

Различают несколько основных типов мутаций.
- Генные мутации, при которых изменения происходят на уровне отдельных генов, т. е. участков молекулы ДНК. Это может быть у трата нуклеотидов, замена одного основания на другое, перестановка нуклеотидов или добавление новых.
- Хромосомные мутации, связанные с нарушением структуры хромосом, приводят к серьезным изменениям, которые могут быть обнаружены при помощи микроскопа. К таким мутациям относятся утраты участков хромосом (делеции), добавление участков, поворот участка хромосомы на 180°, появление повторов.
- Геномные мутации вызвываются изменением числа хромосом. Могут появляться лишние гомологичные хромосомы: в хромосом ном наборе на месте двух гомологичных хромосом оказываются три -трисомия. В случае моносомии наблюдается утрата одной хромосомы из пары. При полиплоидии происходит кратное увеличение генома. Еще один вариант геномной мутации - гаплоидия, при которой остается только одна хромосома из каждой пары.

На частоту возникновения мутаций влияют, как уже было сказано, самые разнообразные факторы. При возникновении ряда геномных мутаций большое значение имеет, в частности, возраст матери.

Комбинативная изменчивость.
Данный тип изменчивости определяется характером полового процесса. При комбинативной изменчивости возникают новые генотипы из-за новых комбинаций генов. Этот тип изменчивости проявляется уже на стадии образования половых клеток. Как уже было сказано, в каждой половой клетке (гамете) представлена только одна гомологичная хромосома из каждой пары. Хромосомы попадают в гамету случайным образом, поэтому половые клетки одного человека могут довольно сильно отличаться по набору генов в хромосомах. Еще более важная стадия для возникновения комбинативной изменчивости - это оплодотворение, после которого у вновь возникшего организма 50% генов унаследовано от одного родителя, и 50% - от другого.

Модификационная изменчивость не связана с изменениями генотипа, а вызвана влиянием среды на развивающийся организм.

Наличие модификационной изменчивости очень важно для понимания сущности наследования. Наследуются не признаки. Можно взять организмы с абсолютно одинаковым генотипом, например вырастить черенки от одного и того же растения, но поместить их при этом в разные условия (освещенность, влажность, минеральное питание) и получить достаточно сильно отличающиеся растения с разными признаками (рост, урожайность, форма листьев и т. п.). Для описания реально сформировавшихся признаков организма используют понятие «фенотип».

Фенотип - это весь комплекс реально возникших признаков организма, который формируется как результат взаимодействия генотипа и влияний среды в ходе развития организма. Таким образом, сущность наследования заключается не в наследовании признака, а в способности генотипа в результате взаимодействия с условиями развития давать определенный фенотип.

Так как модификационная изменчивость не связана с изменениями генотипа, то модификации не передаются по наследству. Обычно это положение почему-то с трудом принимается. Кажется, что если, скажем, родители на протяжении нескольких поколений тренируются в поднятии тяжестей и обладают развитой мускулатурой, то эти свойства должны обязательно передаться детям. Между тем, это типичная модификация, а тренировки - это и есть то воздействие среды, которое повлияло на развитие признака. Никаких изменений генотипа при модификации не происходит и приобретенные в результате модификации признаки не наследуются. Дарвин называл этот вид изменчивости - ненаследственной.

Для характеристики пределов модификационной изменчивости применяется понятие норма реакции. Некоторые признаки у человека невозможно изменить за счет средовых влияний, например группу крови, пол, цвет глаз. Другие, напротив, очень чувствительны к воздействию среды. К примеру, в результате длительного пребывания на солнце цвет кожи становится темнее, а волосы светлеют. На вес человека сильно влияют особенности питания, болезни, наличие вредных привычек, стресс, образ жизни.

Средовые воздействия могут приводить не только к количественным, но и к качественным изменениям фенотипа. У некотррь« видов примулы при пониженной температуре воздуха(15-20 С) появляются цветы красного цвета, если же растения поместить во влажную среду с температурой 30°С, то образуются белые цветки.

причем, хотя норма реакции характеризует ненаследственную форму изменчивости (модификационную изменчивость), она тоже определяется генотипом. Это положение очень важно: норма реакции зависит от генотипа. Одно и то же воздействие среды на генотип может привести к сильному изменению одного его признака и никак не повлиять на другой.

21. Ген - функциональная единица наследственности. Молекулярное строение гена у прокариот и эукариот. Уникальные гены и повторы ДНК. Структурные гены. Гипотеза «1 ген- 1 фермент», её современная трактовка.

Ген - структурная и функциональная единица наследственности, контролирующая развитие определённого признака или свойства. Совокупность генов родители передают потомкам во время размножения. Термин «ген» был введён в употребление в 1909 году датским ботаником Вильгельмом Йогансеном. Изучением генов занимается наука генетика, родоначальником которой считается Грегор Мендель, который в 1865 году опубликовал результаты своих исследований о передачи по наследству признаков при скрещивании гороха. Гены могут подвергаться мутациям - случайным или целенаправленным изменениям последовательности нуклеотидов в цепи ДНК. Мутации могут приводить к изменению последовательности, а следовательно изменению биологических характеристик белка или РНК, которые, в свою очередь, могут иметь результатом общее или локальное изменённое или анормальное функционирование организма. Такие мутации в ряде случаев являются патогенными, так как их результатом является заболевание, или летальными на эмбриональном уровне. Однако, далеко не все изменения последовательности нуклеотидов приводят к изменению структуры белка (благодаря эффекту вырожденности генетического кода) или к существенному изменению последовательности и не являются патогенными. В частности, геном человека характеризуется однонуклеотидными полиморфизмами и вариациями числа копий, такими как делеции и дупликации, которые составляют около 1 % всей нуклеотидной последовательности человека. Однонуклеотидные полиморфизмы, в частности, определяют различные аллели одного гена.

У человека в результате делеции:

Синдром Вольфа- утрачен участок в большой хромосоме 4 ,

Синдром “кошачьего крика”- при делеции в хромосоме 5. Причина: хромосомная мутация потеря фрагмента хромосомы в 5-й паре.

Проявление: неправильное развитие гортани, крики, подобные кошачьим, I раннем детском возрасте, отставание в физическом и умственном развитии.

Мономеры, составляющие каждую из цепей ДНК, представляют собой сложные органические соединения, включающие в себя азотистые основания: аденин(А) или тимин(Т) или цитозин(Ц) или гуанин(Г), пятиатомный сахар-пентозу-дезоксирибозу, по имени которой и получила название сама ДНК, а также остаток фосфорной кислоты. Эти соединения носят название нуклеотидов.

Хромосома любого организма, будь то бактерия или человек, содержит длинную непрерывную цепь ДНК. вдоль которой расположено множество генов. Различные организмы резко отличаются по количеству ДНК, составляющей их геномы. У вирусов в зависимости от их величины и сложности размер генома колеблется от нескольких тысяч до сотен пар нуклеотидов. Гены в таких просто устроенных геномах расположены один за другим и занимают до 100% длины соответствующей нуклеиновой кислоты (РНК и ДНК). Для многих вирусов установлена полная нуклеотидная последовательность ДНК. У бактерий размер генома значительно больше. У кишечной палочки единственная нить ДНК – бактериальная хромосома состоит из 4,2х106(6 степень) пар нуклеотидов. Более половины этого количества состоит из структурных генов, т.е. генов, кодирующих определенные белки. Остальную часть бактериальной хромосомы составляют неспособные транскрибироваться нуклеотидные последовательности, функция которых не вполне ясна. Подавляющее большинство бактериальных генов уникальны, т.е. представлены в геноме один раз. Исключение составляют гены транспортных и рибосомальных РНК, которые могут повторяться десятки раз.

Геном эукариот, особенно высших, резко превышает по размерам геном прокариот и достигает, как отмечалось, сотен миллионов и миллиардов пар нуклеотидов. Количество структурных генов при этом возрастает не очень сильно. Количество ДНК в геноме человека достаточно для образования примерно 2 млн. структурных генов. Реально имеющееся число оценивается как 50-100 тыс. генов, т.е. в 20-40 раз меньше того, что могло бы кодироваться геномом такого размера. Следовательно, приходится констатировать избыточность генома эукариот. Причины избыточности в настоящее время в значительной степени прояснились: во-первых, некоторые гены и последовательности нуклеотидов многократно повторены, во-вторых, в геноме существует много генетических элементов, имеющих регуляторную функцию, в-третьих, часть ДНК вообще не содержит генов.

Согласно современным представлениям, ген, кодирующий синтез определенного белка, у эукариот состоит из нескольких обязательных элементов. Прежде всего это обширная регуляторная зона, оказывающая сильное влияние на активность гена в той или иной ткани организма на определенной стадии его индивидуального развития. Далее расположен непосредственно примыкающий к кодирующим элементам гена промотор – последовательность ДНК длиной до 80-100 пар нуклеотидов, ответственная за связывание РНК-полимеразы, осуществляющей транскрипцию данного гена. Вслед за промотором лежит структурная часть гена, заключающая в себе информацию о первичной структуре соответствующего белка. Эта область для большинства генов эукариот существенно короче регуляторной зоны, однако ее длина может измеряться тысячами пар нуклеотидов.

Важная особенность эукариотических генов – их прерывность. Это значит, что область гена, кодирующая белок, состоит из нуклеотидных последовательностей двух типов. Одни – экзоны – это участки ДНК, которые несут информацию и строении белка и входят в состав соответствующих РНК и белка. Другие – интроны – не кодируют структуру белка и в состав зрелой молекулы и-РНК не входят, хотя и транскрибируются. Процесс вырезания интронов – «ненужных» участков молекулы РНК и сращивания экзонов при образовании и-РНК осуществляется специальными ферментами и получил название Сплайсинг (сшивание, сращивание).

Геном эукариот характеризуется двумя основными особенностями:

1) Повторенность последовательностей

2) Разделением по составу на различные фрагменты, характеризуемые специфическим содержанием нуклеотидов

Повторенная ДНК состоит из нуклеотидных последовательностей различной длины и состава, которые встречаются в геноме несколько раз либо в тандемно-повторенном, либо в диспергированном виде. Последовательности ДНК, которые не повторяются, называются уникальной ДНК. Размер части генома, занятой повторяющимися последовательностями, широко варьирует между таксонами. У дрожжей он достигает 20%, у млекопитающих до 60% всей ДНК повторяется. У растений процент повторенных последовательностей может превышать 80%.

По взаимной ориентации в структуре ДНК различаются прямые, инвертированные, симметричные повторы, палиндромы, комплементарные палиндромы и т.п. В очень широком диапазоне варьирует и длина (в числе оснований) элементарной повторяющейся единицы, и степень их повторяемости, и характер распределения в геноме. периодичность повторений ДНК может иметь очень сложную структуру, когда короткие повторы включены в более протяженные или окаймляют их и т.д. Кроме того, для последовательностей ДНК можно рассматривать зеркальные и инвертированные повторы. Геном человека известен на 94%.На основании этого материала можно сделать следующий вывод- повторы занимают по крайней мере 50% генома.

СТРУКТУРНЫЕ ГЕНЫ - гены, кодирующие клеточные белки с ферментативными или структурными функциями. К ним же относят гены, кодирующие структуру рРНК и тРНК. Есть гены, содержащие информацию о структуре полипептидной цепи, в конечном счете – структурных белках. Такие последовательности нуклеотидов длинной в один ген, называются структурными генами. Гены, определяющие место, время, длительность включения структурных генов – регуляторные гены.

Гены имеют маленький размер, хотя состоят из тысяч пар нуклеотидов. Наличие гена устанавливается по проявлению признака гена (конечному продукту). Общую схему строения генетического аппарата и его работы в 1961 году предложили Жакоб, Моно. Они предложил, что есть участок молекулы ДНК с группой структурных генов. К этой группе примыкает участок в 200пар нуклеотидов – промотор (участок примыкания ДНК зависимой РНК-полимеразы). К этому участку примыкает ген-оператор. Название всей системы – оперон. Регуляция осуществляется регуляторным геном. В итоге белок-репрессор взаимодействует с геном-оператором, и оперон начинает работать. Субстрат взаимодействует с геном регуляторами, оперон блокируется. Принцип обратной связи. Экспрессия оперона включается как единое целое. 1940 год - Бидл и Татум предложили гипотезу: 1 ген – 1 фермент. Эта гипотеза сыграла важную роль – ученые стали рассматривать конечные продукты. Оказалось, что гипотеза имеет ограничения, т.к. все ферменты – белки, но не все белки – ферменты. Как правило, белки являются олигомерами – т.е. существуют в четвертичной структуре. Пример, капсула табачной мозаики имеет более 1200 полипептидов. У эукариот экспрессия (проявление) генов не исследована. Причина – серьезные препятствия:

Организация генетического материала в форме хромосом

У многоклеточных организмов клетки специализированы и поэтому часть генов выключена.

Наличие гистоновых белков, в то время как у прокариот - «голая» ДНК.

Гистоновые и негистоновые белки принимают участие в экспрессии генов, участвуют в создании структуры.

22. Классификация генов: гены структурные, регуляторы. Свойства генов (дискретность, стабильность, лабильность, полиаллелизм, специфичность, плейотропия).

Дискретность - несмешиваемость генов

Стабильность - способность сохранять структуру

Лабильность - способность многократно мутировать

Множественный аллелизм - многие гены существуют в популяции во множестве молекулярных форм

Аллельность - в генотипе диплоидных организмов только две формы гена

Специфичность - каждый ген кодирует свой признак

Плейотропия - множественный эффект гена

Экспрессивность - степень выраженности гена в признаке

Пенетрантность - частота проявления гена в фенотипе

Амплификация - увеличение количества копий гена.

23. Строение гена. Регуляция экспрессия генов у прокариот. Гипотеза оперона.

Экспрессия генов - это процесс, в ходе которого наследственная информация от гена (последовательности нуклеотидов ДНК) преобразуется в функциональный продукт - РНК или белок. Экспрессия генов может регулироваться на всех стадиях процесса: и во время транскрипции, и во время трансляции, и на стадии посттрансляционных модификаций белков.

Регуляция экспрессии генов позволяет клеткам контролировать собственную структуру и функцию и является основой дифференцировки клеток, морфогенеза и адаптации. Экспрессия генов является субстратом для эволюционных изменений, так как контроль за временем, местом и количественными характеристиками экспрессии одного гена может иметь влияние на функции других генов в целом организме. У прокариот и эукариот гены представляют собой последовательности нуклеотидов ДНК. На матрице ДНК происходит транскрипция - синтез комплементарной РНК. Далее на матрице мРНК происходит трансляция - синтезируются белки. Существуют гены, кодирующие нематричную РНК (например, рРНК, тРНК, малые РНК), которые экспрессируются (транскрибируются), но не транслируются в белки.

Исследования на клетках Е. coli позволили установить, что у бактерий существуют ферменты 3 типов:

конститутивные, присутствующие в клетках в постоянных количествах независимо от метаболического состояния организма (например, ферменты гликолиза)

индуцируемые, их концентрация в обычных условиях мала, но может возрастать в 100Q раз и более, если, например, в среду культивирования клеток добавить субстрат такого фермента

репрессируемые, т.е. ферменты метаболических путей, синтез которых прекращается при добавлении в среду выращивания конечного продукта этих путей.

На основании генетических исследований индукции β-галактозидазы, участвующей в клетках Е. coli, в гидролитическом расщеплении лактозы Франсуа Жакоб и Жак Моно в 1961 г. сформулировали гипотезу оперона, которая объясняла механизм контроля синтеза белков у прокариотов.

В экспериментах гипотеза оперона получила полное подтверждение, а предложенный в ней тип регуляции стали называть контролем синтеза белка на уровне транскрипции, так как в этом случае изменение скорости синтеза белков осуществляется за счёт изменения скорости транскрипции генов, т.е. на стадии образования мРНК.

У Е. coli, как и у других прокариотов, ДНК не отделена от цитоплазмы ядерной оболочкой. В процессе транскрипции образуются первичные транскрипты, не содержащие нитронов, а мРНК лишены "кэпа" и поли-А-конца. Синтез белка начинается до того, как заканчивается синтез его матрицы, т.е. транскрипция и трансляция протекают почти одновременно. Исходя из размера генома (4×106 пар нуклеотидов), каждая клетка Е. coli содержит информацию о нескольких тысячах белков. Но при нормальных условиях роста она синтезирует около 600-800 различных белков, а это означает, что многие гены не транскрибируются, т.е. неактивны. Гены белков, функции которых в метаболических процессах тесно связаны, часто в геноме группируются вместе в структурные единицы (опероны). Согласно теории Жакоба и Моно, оперонами называют участки молекулы ДНК, которые содержат информацию о группе функционально взаимосвязанных структурных белков, и регуляторную зону, контролирующую транскрипцию этих генов. Структурные гены оперона экспрессируются согласованно, либо все они транскрибируются, и тогда оперон активен, либо ни один из генов не "прочитывается", и тогда оперон неактивен. Когда оперон активен и все его гены транскрибируются, то синтезируется полицистронная мРНК, служащая матрицей для синтеза всех белков этого оперона. Транскрипция структурных генов зависит от способности РНК-полимеразы присоединяться к промотору, расположенному на 5"-конце оперона перед структурными генами.

Связывание РНК-полимеразы с промотором зависит от присутствия белка-репрессора на смежном с промотором участке, который называют "оператор". Белок-репрессор синтезируется в клетке с постоянной скоростью и имеет сродство к операторному участку. Структурно участки промотора и оператора частично перекрываются, поэтому присоединение белка-репрессора к оператору создаёт стерическое препятствие для присоединения РНК-полимеразы.

Большинство механизмов регуляции синтеза белков направлено на изменение скорости связывания РНК-полимеразы с промотором, влияя таким образом на этап инициации транскрипции. Гены, осуществляющие синтез регуляторных белков, могут быть удалены от оперона, транскрипцию которого они контролируют.

Ожидание рождения ребенка - самое прекрасное время для родителей, но также и самое страшное. Многие волнуются, что малыш может родиться с какими-либо недостатками, физическими или умственными отклонениями.

Наука не стоит на месте, есть возможность проверить на маленьких сроках беременности малыша на наличие отклонений в развитии. Практически все эти анализы могут показать, все ли нормально с ребенком.

Почему так происходит, что у одних и тех же родителей могут появиться на свет абсолютно разные дети - здоровый ребенок и ребенок с отклонениями? Это определяют гены. В рождении недоразвитого малыша или ребенка с физическими недостатками влияют генные мутации, связанные с изменением структуры ДНК. Поговорим об этом подробнее. Рассмотрим, как это происходит, какие генные мутации бывают, и их причины.

Что такое мутации?

Мутации - это физиологическое и биологическое изменение клеток в структуре ДНК. Причиной может стать облучение (при беременности нельзя делать снимки рентгеновские, на наличие травм и переломов), ультрафиолетовые лучи (долгое нахождение на солнце во время беременности или нахождение в комнате с включенными лампами ультрафиолетового света). Также такие мутации могут передаться и по наследству от предков. Все они распределяются на типы.

Генные мутации с изменением структуры хромосом или их количества

Это мутации, при которых строение и число хромосом изменены. Хромосомные участки могут выпадать или удваиваться, перемещаться в зону негомологическую, поворачиваться от нормы на сто восемьдесят градусов.

Причины появления такой мутации - это нарушение при кроссенговере.

Генные мутации связаны с изменением структуры хромосом или их количества, являются причиной серьезных расстройств и болезней у малыша. Такие заболевания неизлечимы.

Виды хромосомных мутаций

Всего различаются два вида основных хромосомных мутаций: численные и структурные. Анэуплоидии - это виды по количеству хромосом, то есть когда генные мутации связаны с изменением числа хромосом. Это возникновение дополнительной или нескольких последних, потеря какой-либо из них.

Генные мутации связаны с изменением структуры в том случае, когда хромосомы разрываются, а в дальнейшем воссоединяются, нарушив нормальную конфигурацию.

Виды численных хромосом

По числу хромосом мутации разделяют на анэуплоидии, то есть виды. Рассмотрим основные, выясним разницу.

  • трисомии

Трисомия - это возникновение в кариотипе лишней хромосомы. Самое распространенное явление - это появление двадцать первой хромосомы. Она становится причиной синдрома Дауна, или, как еще называют это заболевание - трисомия двадцать первой хромосомы.

Синдром Патау выявляется по тринадцатой, а по восемнадцатой хромосоме диагностируют Это все аутосомные трисомии. Прочие трисомии не являются жизнеспособными, они погибают в утробе и теряются при самопроизвольных абортах. Те индивидуумы, у которых возникают дополнительные половые хромосомы (X, Y), - жизнеспособны. Клиническое проявление таких мутаций весьма незначительно.

Генные мутации, связанные с изменением числа, возникают по определенным причинам. Трисомии чаще всего могут возникнуть при расхождении в анафазе (мейоз 1). Результатом такого расхождения является то, что обе хромосомы попадают только в одну из двух дочерних клеток, вторая остается пустой.

Реже может возникнуть нерасхождение хромосом. Это явление называют нарушением в расхождении сестринских хроматид. Возникает в мейозе 2. Это именно тот случай, когда две совершенно одинаковые хромосомы селятся в одной гамете, вызывая трисомную зиготу. Нерасхождение происходит в ранние стадии процесса дробления яйцеклетки, которая была оплодотворена. Таким образом, возникает клон клеток-мутантов, который может охватить большую или меньшую часть тканей. Иногда проявляется клинически.

Многие связывают двадцать первую хромосому с возрастом беременной женщины, но этот фактор до сегодняшнего дня не имеет однозначного подтверждения. Причины, по которым не расходятся хромосомы, остаются неизвестными.

  • моносомии

Моносомией называют отсутствие любой из аутосом. Если такое происходит, то в большинстве случаев плод невозможно выносить, случаются преждевременные роды на ранних сроках. Исключение - моносомия по причине двадцать первой хромосомы. Причиной, по которой возникает моносомия, может стать и нерасхождение хромосом, и потеря хромосомы во время ее пути в анафазе к клетке.

По половым хромосомам моносомия приводит к образованию плода, у которого кариотип ХО. Клиническое проявление такого кариотипа - синдром Тернера. В восьмидесяти процентах случаев из ста появление моносомии по Х-хромосоме происходит из-за нарушения мейоза папы ребенка. Это связано с нерасхождением Х и Y хромосом. В основном плод с кариотипом ХО погибает в утробе матери.

По половым хромосомам трисомия разделяется на три вида: 47 XXY, 47 XXX, 47 XYY. является трисомией 47 XXY. С таким кариотипом шансы выносить ребенка делятся пятьдесят на пятьдесят. Причиной такого синдрома может стать нерасхождение хромосом Х или нерасхождение Х и Y сперматогенеза. Второй и третий кариотипы могут возникнуть только у одной из тысячи беременных женщин, они практически не проявляются и в большинстве случаев обнаруживаются специалистами совершенно случайно.

  • полиплоидия

Это генные мутации, связанные с изменением гаплоидного набора хромосом. Эти наборы могут быть утроенными и учетверенными. Триплоидия чаще всего диагностируется уже только тогда, когда произошел спонтанный аборт. Было несколько случаев, когда матери удавалось выносить такого малыша, но все они погибали, не достигнув и месячного возраста. Механизмы генных мутаций в случае триплодии обуславливают полным расхождением и нерасхождением всех хромосомных наборов либо женских, либо мужских половых клеток. Также механизмом может послужить двойное оплодотворение одной яйцеклетки. В этом случае происходит перерождение плаценты. Такое перерождение называют пузырным заносом. Как правило, такие изменения ведут к развитию у малыша умственных и физиологических нарушений, прерыванию беременности.

Какие генные мутации связаны с изменением структуры хромосом

Структурные изменения хромосом являются следствием разрыва (разрушения) хромосомы. В результате эти хромосомы соединяются, нарушив прежний свой вид. Эти видоизменения могут быть несбалансированными и сбалансированными. Сбалансированные не имеют излишка или недостатка материала, поэтому не проявляются. Проявиться они могут только в тех случаях, если на месте разрушения хромосомы был ген, который является функционально важным. У сбалансированного набора могут появиться гаметы несбалансированные. В следствии оплодотворение яйцеклетки такой гаметой может стать причиной появления плода с несбалансированным хромосомным набором. При таком наборе у плода возникает целый ряд пороков развития, появляются тяжелые виды патологии.

Типы структурных видоизменений

Генные мутации происходят на уровне образования гаметы. Предотвратить этот процесс нельзя, равно как нельзя заведомо узнать, могут произойти. Структурных видоизменений есть несколько видов.

  • делеции

Это изменение связано с потерей части хромосомы. После такого разрыва хромосома становится более короткой, а ее оторванная часть теряется при дальнейшем делении клетки. Интерстициальные делеции - это тот случай, когда одна хромосома разрывается сразу в нескольких местах. Такие хромосомы обычно создают нежизнеспособный плод. Но есть и случаи, когда малыши выживали, но у них из-за такого набора хромосом был синдром Вольфа-Хиршхорна, "кошачий крик".

  • дупликации

Эти генные мутации происходят на уровне организации сдвоенных участков ДНК. В основном дупликация не может стать причиной таких патологий, которые вызывают делеции.

  • транслокации

Транслокация возникает из-за переноса генетического материала с одной хромосомы на другие. Если же происходит разрыв одновременно в нескольких хромосомах и они обмениваются сегментами, то это становится причиной возникновения реципроктной транслокации. Кариотип такой транслокации имеет всего сорок шесть хромосом. Сама же транслокация выявляется только при детальном анализе и изучении хромосомы.

Изменение последовательности нуклеотидов

Генные мутации связаны с изменением последовательности нуклеотидов, когда выражаются в видоизменении структур некоторых участков ДНК. По последствиям такие мутации делятся на два типа - без сдвига рамки считывания и со сдвигом. Чтобы точно знать причины изменения участков ДНК, нужно рассмотреть каждый тип отдельно.

Мутация без сдвига рамки

Эти генные мутации связаны с изменением и заменой нуклеотидных пар в структуре ДНК. При таких заменах не теряется длина ДНК, но возможна потеря и замена аминокислот. Есть вероятность того, что структура белка сохранится, этим послужит Рассмотрим детально оба варианта развития: с заменой и без замены аминокислот.

Мутация с заменой аминокислот

Замена остатка аминокислоты в составе полипептидов называют миссенс-мутациями. В гемоглобиновой молекуле человека есть четыре цепи - две "а" (она размещена в шестнадцатой хромосоме) и две "b" (кодировка в одиннадцатой хромосоме). Если "b" - цепь нормальная, и в ее составе есть сто сорок шесть остатков аминокислот, а шестым является глутаминовая, то гемоглобин будет нормальным. В этом случае кислота глутаминовая должна быть закодирована триплетом ГАА. Если за счет мутации ГАА заменен на ГТА, то вместо глутаминовой кислоты в молекуле гемоглобина образуется валин. Таким образом, вместо нормального гемоглобина HbA появится другой гемоглобин HbS. Таким образом, замена одной аминокислоты и одного нуклеотида станет причиной серьезного тяжелого заболевания - анемии серповидноклеточной.

Эта болезнь проявляется тем, что эритроциты становятся по форме, как серп. В таком виде они не способны нормально доставлять кислород. Если на клеточном уровне гомозиготы имеют формулу HbS/HbS, то это ведет к смерти ребенка в самом раннем детстве. Если формула HbA/HbS, то эритроциты имеют слабую форму изменения. Такое слабое изменение имеет полезное качество - устойчивость организма к малярии. В тех странах, где есть опасность заразиться малярией такая же, как в Сибири простудой, это изменение несет полезное качество.

Мутация без замены аминокислот

Замены нуклеотидов без обмена аминокислотами называются сеймсенс-мутациями. Если в участке ДНК, кодирующем "b"- цепь произойдет замена ГАА на ГАГ, то из-за того, что окажется в избытке, замены глутаминовой кислоты не может произойти. Структура цепи не будет изменена, в эритроцитах не будет видоизменений.

Мутации со сдвигом рамки

Такие генные мутации связаны с изменением длины ДНК. Длина может стать меньше или больше, в зависимости от потери или прибавления нуклеотидных пар. Таким образом, будет изменена полностью вся структура белка.

Может произойти внутригенная супрессия. Это явление происходит, когда есть место двум мутациям, компенсирующим друг друга. Это момент присоединения нуклеотидной пары после того, как одна была утеряна, и наоборот.

Нонсенс-мутации

Это особая группа мутаций. Она происходит редко, в ее случае происходит появление стоп-кодонов. Это может случиться как при утрате пар нуклеотидов, так и при их присоединении. Когда появляются стоп-кодоны, синтез полипептидов полностью останавливается. Так могут образоваться нуль-аллели. Этому не будет соответствовать ни один из белков.

Есть такое понятие, как межгенная супрессия. Это такое явление, когда мутация одних генов подавляет мутации в других.

Выявляются ли изменения при беременности?

Генные мутации, связанные с изменением числа хромосом, в большинстве случаев можно определить. Чтобы узнать, есть ли у плода пороки в развитии и патологии, на первых неделях беременности (с десяти до тринадцати недель) назначают скрининг. Это ряд простых обследований: забор на анализы крови из пальца и вены, УЗИ. На ультразвуковом исследовании плод рассматривают в соответствии с параметрами всех конечностей, носа и головы. Эти параметры при сильном несоответствии нормам указывают на то, что у малыша есть пороки в развитии. Подтверждается или опровергается этот диагноз на основании результатов анализа крови.

Также под пристальным наблюдением медиков оказываются будущие мамы, у малышей которых могут возникнуть мутации на генном уровне, передающиеся по наследству. То есть это те женщины, в родне которых были случаи рождения ребенка с умственными или физическими отклонениями, выявленными синдромами Дауна, Патау и прочими генетическими заболеваниями.